A lower bound on the quantitative version of the transversality theorem

Andrew Murdza and Khai T. Nguyen
Department of Mathematics, North Carolina State University
e-mails: apmurdza@ncsu.edu, khai@math.ncsu.edu

December 29, 2022

Abstract

The present paper studies a quantitative version of the transversality theorem. More precisely, given a continuous function $f \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ and a manifold $W \subset \mathbb{R}^{m}$ of dimension p, a sharpness result on the upper quantitative estimate of the $(d+p-m)$-dimensional Hausdorff measure of the set $\mathcal{Z}_{W}^{f}=\left\{x \in[0,1]^{d}: f(x) \in W\right\}$, which was achieved in [8], will be proved in terms of power functions.

Keyword. Transversality lemma, quantitative estimates
AMS Mathematics Subject Classification. 46T20

1 Introduction

Let $g: X \rightarrow Y$ be a \mathcal{C}^{1} map between two smooth manifolds X of dimension d and Y of dimension m. For any smooth submanifold $W \subseteq Y$ of dimension p, we say that the function g is transverse to W and write g 币 W if

$$
(d g)_{p}\left(T_{p} X\right)+T_{g(p)}(W)=T_{g(p)}(Y) \text { for all } p \in g^{-1}(W)
$$

The transversality lemma, which is the key to studying Thom's transversality theorem [10, 11,12], shows that the set of transverse maps is dense [9]. In particular, for any continuous function $f:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ and any $\varepsilon>0$, there exists a \mathcal{C}^{1} function $f_{\varepsilon}:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ such that

$$
\left\|f_{\varepsilon}-f\right\|_{\mathcal{C}^{1}} \leq \varepsilon \quad \text { and } \quad f_{\varepsilon} \Pi W .
$$

For every $h \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$, consider the set

$$
\begin{equation*}
\mathcal{Z}_{W}^{h}:=\left\{x \in[0,1]^{d}: h(x) \in W\right\} . \tag{1.1}
\end{equation*}
$$

If h is smooth and transverse to W, then \mathcal{Z}_{W}^{h} is a $(d+p-m)$-dimensional smooth manifold. Hence, its $(d+p-m)$-dimensional Hausdorff measure is finite. In the spirit of metric entropy,
which was used in the study of compactness estimates for solution sets of hyperbolic conservation laws [1, 2, 3, 7] and Hamilton-Jacobi equations [4, 5, 6], a natural question is to perform a quantitative analysis of the measure of \mathcal{Z}_{W}^{f}. Namely, how small can one make this measure, by an ε-perturbation of f ? To formulate more precisely the result, given $f \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$, one defines

$$
\begin{equation*}
\mathcal{N}_{W}^{f}(\varepsilon):=\inf _{\|h-f\|_{C^{0}} \leq \varepsilon} \mathcal{H}^{d+p-m}\left(\mathcal{Z}_{W}^{h}\right) \tag{1.2}
\end{equation*}
$$

to be the smallest $(d+p-m)$-Hausdorff measure of \mathcal{Z}_{W}^{h} among all functions $h \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ with $\|h-f\|_{\mathcal{C}^{0}} \leq \varepsilon$. In $[8]$, an upper bound on the number $\mathcal{N}_{W}^{f}(\varepsilon)$ was recently established and applied to provide quantitative estimates on the number of shock curves in entropy weak solutions of scalar conservation laws with strictly convex fluxes. Specifically, for $f \in \mathcal{C}^{\alpha}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ with Hölder norm $\|f\|_{\mathcal{C}^{0}, \alpha}$ and $\varepsilon>0$ sufficiently small, there exists a constant $C_{W}>0$ that depends only on W such that

$$
\begin{equation*}
\mathcal{N}_{W}^{f}(\varepsilon) \leq C_{W} \cdot\left(\frac{\|f\|_{\mathcal{C}^{0, \alpha}}}{\varepsilon}\right)^{\frac{m-p}{\alpha}} \tag{1.3}
\end{equation*}
$$

The blow up rate $\left(\frac{1}{\varepsilon}\right)^{\frac{m-p}{\alpha}}$ with respect to ε is shown to be the best bound in terms of power function in [8, Example 3.1] for a class of Lipscthiz functions ($\alpha=1$) in the scalar case ($d=$ $m=1)$. However, this still remains open for the multi-dimensional cases. Hence, the present paper aims to address the sharpness of (1.3) for general continuous function $f \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ with $d, m \geq 1$. In particular, we achieve the following lower quantitative estimate for the class of Hölder continuous functions.

Theorem 1.1 Assume that $p<m \leq p+d$ and $W \subset \mathbb{R}^{m}$ is a \mathcal{C}^{1}-manifold of dimension p. For every $0<\alpha \leq 1$ and $\lambda>0$, there exists a Hölder continuous function $f:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ with exponent α and the Hölder norm λ such that

$$
\mathcal{N}_{W}^{f}(\varepsilon) \geq C_{[W, \alpha, \lambda]} \cdot\left(\frac{1}{\varepsilon \cdot 2^{4 \cdot \sqrt{\alpha\left|\log _{2} \varepsilon\right|}}}\right)^{\frac{m-p}{\alpha}}
$$

for some constant $C_{[W, \alpha, \lambda]}>0$ that depends only on W, α, and λ.
Here the constant $C_{[W, \alpha, \lambda]}$ is explicitly computed in Remark 2.4. Moreover, by using the concept of modulus of continuity and its inverse in Definition 2.1, a general result for continuous functions will be proved in Theorem 2.3 of Section 2. This can be easily extended to the case of continuous functions $f: X \rightarrow Y$ where X, Y are smooth manifolds and $W \subseteq Y$ is a smooth submanifold of Y. Finally, we remark that the factor $2^{4 \cdot \sqrt{\alpha\left|\log _{2} \varepsilon\right|}}$ in Theorem 1.1 is necessary. Indeed, we shall prove in the Proposition 2.1 that the estimate on $\mathcal{N}_{W}^{f}(\varepsilon)$ in (1.3) is not actually sharp for the case $\alpha=d=m=1, p=0$, and $W=\{0\}$. This leads to an open question on the sharp estimate for $\mathcal{N}_{W}^{f}(\varepsilon)$.

2 A lower bound on $\mathcal{N}_{W}^{f}(\varepsilon)$

In this section, we will establish a lower quantitative estimate on the Hausdorff measure of \mathcal{Z}_{W}^{f} for a constructed continuous $f \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ which admits a given modulus of continuity
and the set $W \subseteq \mathbb{R}^{m}$ being a \mathcal{C}^{1} manifold with $\operatorname{dim}(W)=p$. For the sake of simplicity, we shall assume that W consists of only one chart \mathbb{R}^{m}, i.e.,
(A1). There exists a \mathcal{C}^{1} diffeomorphism ϕ between open subsets $U, V \subset \mathbb{R}^{m}$ such that $W \subset U$ and $\phi(W)=\mathbb{R}^{p} \times\{0\} \cap V$ and

$$
\begin{equation*}
0<\gamma_{W} \doteq 2 \sqrt{m-p} \cdot\left(\frac{\sup _{x \in U}|\nabla \phi(x)|}{\inf _{x \in U}|\nabla \phi(x)|}\right)<\infty \tag{2.4}
\end{equation*}
$$

For a general \mathcal{C}^{1} manifold W consists of multiple charts, one can just restrict the construction of f in a single chart of W which has a smallest constant γ_{W} among other charts. Toward to the main result, let us now recall some basic concepts on the modulus of continuity and its inverse.

Definition 2.1 Given subsets $U \subseteq \mathbb{R}^{d}$ and $V \subseteq \mathbb{R}^{m}$, let $h: U \rightarrow V$ be continuous. The minimal modulus of continuity of h is given by

$$
\begin{equation*}
\omega_{h}(\delta)=\sup _{x, y \in U,|x-y| \leq \delta}|h(y)-h(x)| \quad \text { for all } \delta \in[0, \operatorname{diam}(U)] \text {. } \tag{2.5}
\end{equation*}
$$

The inverse of the minimal modulus of continuity of h is the map $s \rightarrow \Psi_{h}(s)$ is defined by

$$
\begin{equation*}
\Psi_{h}(s):=\sup \{\delta \geq 0:|h(x)-h(y)| \leq s \text { for all }|x-y| \leq \delta, x, y \in U\} \tag{2.6}
\end{equation*}
$$

for all $s \geq 0$.
It is clear that $\Psi_{h}(s)=\infty$ for all $s \in\left[M_{h}, \infty\left[\right.\right.$ with $M_{h}:=\sup _{x, y \in U}|h(x)-h(y)|$. In particular, if h is a constant function then $\Psi_{h}(s)=\infty$ for all $s \geq 0$. Otherwise, by the continuity of h, it holds

$$
\left.\Psi_{h}(0)=0 \quad \text { and } \quad 0<\Psi_{h}(s) \leq \operatorname{diam}(U) \quad \text { for all } s \in\right] 0, M_{h}[
$$

Moreover, $\Psi_{h}(\cdot):[0, \infty[\rightarrow[0, \infty[$ is increasing and superadditive

$$
\Psi_{h}\left(s_{1}+s_{2}\right) \geq \Psi_{h}\left(s_{1}\right)+\Psi_{h}\left(s_{2}\right) \quad \text { for all } s_{1}, s_{2} \geq 0
$$

If the map $\delta \rightarrow \omega_{h}(\delta)$ is strictly increasing in $\left[0, \operatorname{diam}(U)\left[\right.\right.$ then Ψ_{h} is the inverse of ω_{h}, i.e.,

$$
\Psi_{h}(s)=\omega_{h}^{-1}(s) \quad \text { for all } s \in\left[0, M_{h}[.\right.
$$

From the above observations, we define a modulus of continuity as follows:

Definition 2.2 A function $\beta:[0, \infty] \rightarrow[0, \infty]$ is called a modulus of continuity if it is increasing, subadditive, and satisfies

$$
\lim _{\delta \rightarrow 0+} \beta(\delta)=\beta(0)=0
$$

We say that a continuous function $f: U \subset \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ admits β as a modulus of continuity if

$$
\begin{equation*}
\sup _{x, y \in U,|x-y| \leq s}|f(x)-f(y)| \leq \beta(s) \quad \text { for all } s \geq 0 . \tag{2.7}
\end{equation*}
$$

The main result in this paper is stated as follows:
Theorem 2.3 In addition to (A1), assume that $p<m \leq p+d$. For every modulus of continuity β, there exists a continuous function $f:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ that admits β as a modulus continuity and for $\varepsilon>0$ sufficiently small

$$
\begin{equation*}
\mathcal{N}_{W}^{f}(\varepsilon) \geq\left(\frac{16}{\Psi_{\beta}\left(\gamma_{W} \varepsilon\right)}\right)^{m-p} \cdot 2^{-4(m-p) \cdot \sqrt{\left|\log _{2}\left(\Psi_{\beta}\left(\gamma_{W} \varepsilon\right)\right)\right|} .} \tag{2.8}
\end{equation*}
$$

Proof. The proof is divided into three main steps:
Step 1. Consider the case $W=\{0\}$ and $p=0$. We claim that
(G). There exists a continuous function $\tilde{f}:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ that admits β as a modulus of continuity and for every $0<\varepsilon<\frac{1}{2 \sqrt{m}} \cdot \beta\left(2^{-5}\right)$ it holds

$$
\begin{equation*}
\mathcal{N}_{\{0\}}^{\tilde{f}}(\varepsilon) \geq\left(\frac{16}{\Psi_{\beta}(2 \sqrt{m} \varepsilon)}\right)^{m} \cdot 2^{-4 m \cdot \sqrt{\left|\log _{2}\left(\Psi_{\beta}(2 \sqrt{m} \varepsilon)\right)\right|}} \tag{2.9}
\end{equation*}
$$

with Ψ_{β} being the inverse of the minimal modulus of continuity of β.
The construction of a desired function $\tilde{f} \in \mathcal{C}\left([0,1], \mathbb{R}^{m}\right)$ in (G). will be done as follows:

1. Let's first divide $[0,1]$ into countably infinite subintervals $\left[s_{n}, s_{n+1}\right]$ with

$$
s_{1}=0, \quad s_{n}=\sum_{\ell=1}^{n} 2^{-\ell} \quad \text { for all } n \geq 2
$$

For every $n \geq 1$, we define $u_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
u_{n}(s)=\sum_{k=0}^{2^{n^{2}}-1} c_{n}\left(s-s_{n}-4 k \ell_{n}\right), \quad \ell_{n}=2^{-n^{2}-n-2},
$$

where $c_{n}:[0,1] \rightarrow \mathbb{R}$ is a sample function with $\operatorname{supp}\left(c_{n}\right) \subseteq\left[0,4 \ell_{n}\right]$ such that for all $s \in\left[0,2 \ell_{n}\right]$

$$
\begin{equation*}
c_{n}(s)=-c_{n}\left(4 \ell_{n}-s\right)=\frac{\beta(s)}{2} \cdot \chi_{\left[0, \ell_{n}[\right.}(s)+\frac{\beta\left(2 \ell_{n}-s\right)}{2} \cdot \chi_{\left[\ell_{n}, 2 \ell_{n}\right]}(s) \tag{2.10}
\end{equation*}
$$

The function $\tilde{f}=\left(\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f}_{m}\right) \in \mathcal{C}\left([0,1], \mathbb{R}^{m}\right)$ is defined by

$$
\begin{equation*}
\tilde{f}(x)=\frac{1}{\sqrt{m}} \cdot\left(r\left(x_{1}\right), \ldots, r\left(x_{m}\right)\right) \quad \text { for all } x=\left(x_{1}, \ldots, x_{d}\right) \in[0,1]^{d} \tag{2.11}
\end{equation*}
$$

with

$$
r(s) \doteq \sum_{n=1}^{\infty} u_{n}(s) \quad \text { for all } s \in[0,1]
$$

Since the modulus of continuity of r is bounded by β, the modulus of continuity of \tilde{f} is also bounded by β. Indeed, for every $s \geq 0$, one estimates

$$
\begin{aligned}
\omega_{\tilde{f}}(s) & =\sup _{x, y \in[0,1]^{d},|x-y| \leq s}|\tilde{f}(x)-\tilde{f}(y)| \\
& =\sup _{x, y \in[0,1]^{d},|x-y| \leq s} \frac{1}{\sqrt{m}} \cdot\left(\sum_{i=1}^{m}\left|r\left(x_{i}\right)-r\left(y_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \leq \beta(s) .
\end{aligned}
$$

Assume that for every $\varepsilon>0$ satisfying

$$
\begin{equation*}
\frac{1}{2 \sqrt{m}} \cdot \beta\left(\frac{\ell_{n_{0}+1}}{2}\right) \leq \varepsilon \leq \frac{1}{2 \sqrt{m}} \cdot \beta\left(\frac{\ell_{n_{0}}}{2}\right) \tag{2.12}
\end{equation*}
$$

it holds

$$
\begin{equation*}
\mathcal{N}_{\{0\}}^{\tilde{f}}(\varepsilon)=\inf _{\|g-f\|_{\mathcal{C}^{0}} \leq \varepsilon} \mathcal{H}^{d-m}\left(\mathcal{Z}_{\{0\}}^{g}\right) \geq 2^{m n_{0}^{2}} . \tag{2.13}
\end{equation*}
$$

In this case, by the properties of an inverse of the minimal modulus of continuity in (2.6), we have that

$$
\Psi_{\beta}(2 \sqrt{m} \varepsilon) \geq \Psi_{\beta}\left(\beta\left(\frac{\ell_{n_{0}+1}}{2}\right)\right) \geq \frac{\ell_{n_{0}+1}}{2}=2^{-\left(n_{0}+1\right)^{2}-\left(n_{0}+1\right)-3} \geq 2^{-\left(n_{0}+2\right)^{2}}
$$

Thus, one has

$$
n_{0} \geq-2+\sqrt{-\log _{2} \Psi_{\beta}(2 \sqrt{m} \varepsilon)}
$$

and (2.9) follows from (2.13).
2. In the next two steps, we shall prove (2.13). For every $n \geq 1$ and $k \in\left\{0,1, \ldots, 2^{n^{2}}-1\right\}$, set

$$
a_{n, k}=s_{n}+(4 k+1) \ell_{n}, \quad b_{n, k}=s_{n}+(4 k+3) \ell_{n},
$$

we shall denote by

$$
\begin{equation*}
\square_{n, \iota}=\left[a_{n, \iota_{1}}, b_{n, \iota_{1}}\right] \times \cdots \times\left[a_{n, \iota_{m}}, b_{n, \iota_{m}}\right] \quad \text { for all } \iota \in\left\{0,1, \ldots, 2^{n^{2}}-1\right\}^{m} . \tag{2.14}
\end{equation*}
$$

Fix $g \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ with $\|\tilde{f}-g\|_{\mathcal{C}^{0}} \leq \varepsilon$. By the definition of $\mathcal{Z}_{\{0\}}^{g}$, we have

$$
\mathcal{Z}_{\{0\}}^{g} \supseteq \bigcup_{n \geq 1, \iota \in\left\{0,1, \ldots, 2^{n^{2}}-1\right\}^{m}}\left(\bigcup_{z \in[0,1]^{d-m}} \mathcal{Z}_{n, l}(z) \times\{z\}\right)
$$

with

$$
\mathcal{Z}_{n, \iota}(z)=\left\{y \in \square_{n, \iota}: g\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{d-m}\right)=0\right\}
$$

Assume that for every $1 \leq n \leq n_{0}$ and $\iota \in\left\{0,1, \ldots, 2^{n^{2}}-1\right\}^{m}$, the set

$$
\begin{equation*}
\mathcal{Z}_{n, \iota}(z) \neq \varnothing \quad \text { for all } z \in[0,1]^{d-m} . \tag{2.15}
\end{equation*}
$$

In this case, we can bound the $(d-m)$-Hausdorff measure of $\mathcal{Z}_{\{0\}}^{g}$ by

$$
\begin{aligned}
\mathcal{H}^{d-m}\left(\mathcal{Z}_{\{0\}}^{g}\right) & \geq \sum_{n=1}^{\infty} \sum_{\iota \in\left\{0,1, \ldots, 2^{n^{2}}-1\right\}^{m}} \mathcal{H}^{d-m}\left(\bigcup_{z \in[0,1]^{d-m}} \mathcal{Z}_{n, \iota}(z) \times\{z\}\right) \\
& \geq \sum_{n=1}^{n_{0}} \sum_{\iota \in\left\{0,1, \ldots, 2^{n^{2}}-1\right\}^{m}} \mathcal{H}^{d-m}\left([0,1]^{d-m}\right)=\sum_{n=1}^{n_{0}} 2^{m n^{2}} \geq 2^{m n_{0}^{2}},
\end{aligned}
$$

and this yields (2.13).
3. To complete the proof, we need to verify (2.15). Fix $n \in\left\{1, \ldots, n_{0}\right\}, \iota \in\left\{0,1, \ldots, 2^{n^{2}}-1\right\}^{m}$, and $z \in[0,1]^{d-m}$, we consider the continuous map $h^{z}: \square_{n, \iota} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
h^{z}(y)=y+\frac{\sqrt{m} \cdot \ell_{n}}{\beta\left(\ell_{n} / 2\right)} \cdot g(y, z) \quad \text { for all } y \in \square_{n, \iota} . \tag{2.16}
\end{equation*}
$$

Notice that $\square_{n, \iota} \subseteq[0,1]^{m}$ is a cube of size $2 \ell_{n}$ centered at $c^{\iota, n}$ with

$$
c_{i}^{\iota, n}=s_{n}+\left(4 \iota_{i}+2\right) \ell_{n} \quad \text { for all } i \in\{1,2, \ldots, m\}
$$

Recall (2.11), (2.12), and $\|\tilde{f}-g\|_{\mathcal{C}^{0}} \leq \varepsilon$, for every $y \in \square_{n, \iota}$ and $i \in\{1,2, \ldots, m\}$, set $s:=$ $y_{i}-s_{n}-4 \iota_{i} \ell_{n} \in\left[\ell_{n}, 3 \ell_{n}\right]$, we estimate

$$
\begin{align*}
\left|h_{i}^{z}(y)-c_{i}^{\iota, n}\right| & =\left|y_{i}+\frac{\sqrt{m} \cdot \ell_{n}}{\beta\left(\ell_{n} / 2\right)} \cdot g_{i}(y, z)-s_{n}-\left(4 \iota_{i}+2\right) \ell_{n}\right| \\
& \leq \frac{\sqrt{m} \cdot \ell_{n}}{\beta\left(\ell_{n} / 2\right)} \cdot \varepsilon+\left|y_{i}+\frac{\sqrt{m} \cdot \ell_{n}}{\beta\left(\ell_{n} / 2\right)} \cdot f_{i}(y, z)-s_{n}-\left(4 \iota_{i}+2\right) \ell_{n}\right| \\
& \leq \frac{\ell_{n}}{2}+\left|y_{i}+\frac{\ell_{n}}{\beta\left(\ell_{n} / 2\right)} r\left(y_{i}\right)-s_{n}-\left(4 \iota_{i}+2\right) \ell_{n}\right| \tag{2.17}\\
& =\frac{\ell_{n}}{2}+\left|s-2 \ell_{n}+\ell_{n} \cdot \frac{c_{n}(s)}{\beta\left(\ell_{n} / 2\right)}\right| .
\end{align*}
$$

By the definition of c_{n} in (2.10), both cases $s \in\left[\ell_{n}, 2 \ell_{n}\right]$ and $s \in\left[2 \ell_{n}, 3 \ell_{n}\right]$ are similar, we shall bound $\left|h_{i}^{z}(y)-c_{i}^{\iota, n}\right|$ for $s \in\left[\ell_{n}, 2 \ell_{n}\right]$. In this case, we have that

$$
\left|h_{i}^{z}(y)-c_{i}^{\iota, n}\right|=\frac{\ell_{n}}{2}+\left|s-2 \ell_{n}+\ell_{n} \cdot \frac{\beta\left(2 \ell_{n}-s\right)}{2 \beta\left(\ell_{n} / 2\right)}\right|
$$

If $s \geq \frac{3 \ell_{n}}{2}$ then $\left|h_{i}^{z}(y)-c_{i}^{\iota, n}\right| \leq \frac{\ell_{n}}{2}+\max \left\{2 \ell_{n}-s, \ell_{n} \cdot \frac{\beta\left(2 \ell_{n}-s\right)}{2 \beta\left(\ell_{n} / 2\right)}\right\} \leq \ell_{n}$. Otherwise, if $\ell_{n} \leq s<\frac{3 \ell_{n}}{2}$ then by the subadditivity of β, we have

$$
-\ell_{n}=-\frac{\ell_{n}}{2}-\left(\ell_{n}-\ell_{n} \cdot \frac{\beta\left(\ell_{n} / 2\right)}{2 \beta\left(\ell_{n} / 2\right)}\right) \leq h_{i}^{z}(y)-c_{i}^{\iota, n} \leq \frac{\ell_{n}}{2}-\frac{\ell_{n}}{2}+\ell_{n} \cdot \frac{\beta\left(\ell_{n}\right)}{2 \beta\left(\ell_{n} / 2\right)} \leq \ell_{n}
$$

Thus, the map $y \mapsto h^{z}(y)$ is invariant in $\square_{n, \iota}$. Finally, by Brouwer's fixed point theorem, h^{z} has a fixed point $y_{z} \in \square_{n, \iota}$, and (2.16) implies that y_{z} belongs to the set $\mathcal{Z}_{n, \iota}(z)$ in (2.15). The proof of (G)is complete.

Step 2. For every given $r_{0}>0$, we shall prove our result for the case $W=\left[-r_{0}, r_{0}\right]^{p} \times\{0\}^{m-p}$. From (G), there exists a function $\tilde{g} \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m-p}\right)$ such that

- \tilde{g} admits β as a modulus of continuity;
- For every $0<\varepsilon<\frac{1}{2 \sqrt{m-p}} \cdot \beta\left(2^{-5}\right)$, it holds

$$
\begin{equation*}
\mathcal{N}_{\{0\}}^{g}(\varepsilon) \geq\left(\frac{16}{\Psi_{\beta}(2 \sqrt{m-p} \cdot \varepsilon)}\right)^{m-p} \cdot 2^{-4(m-p) \cdot \sqrt{\left|\log _{2}\left(\Psi_{\beta}(2 \sqrt{m-p} \cdot \varepsilon)\right)\right|} . . . ~ . ~} \tag{2.18}
\end{equation*}
$$

The continuous function $g:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ defined by

$$
g(x)=(0, \tilde{g}(x)) \quad \text { for all } x \in[0,1]^{d},
$$

admits β as a modulus of continuity. Moreover, if $0<\varepsilon \leq \min \left\{\frac{1}{2 \sqrt{m-p}} \cdot \beta\left(2^{-5}\right), r_{0}\right\}$ then for every function $h=\left(h_{1}, \ldots, h_{m}\right) \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ with $\|h-g\|_{\mathcal{C}^{0}} \leq \varepsilon$, it holds

$$
h_{i}(x) \in\left[-r_{0}, r_{0}\right] \quad \text { for all } i \in\{1, \ldots, p\}, x \in[0,1]^{d} .
$$

Thus, we can bound the $(d-m+p)$ Hausdorff measure of \mathcal{Z}_{W}^{h} by

$$
\begin{align*}
\mathcal{H}^{d-m+p}\left(\mathcal{Z}_{W}^{h}\right) & =\mathcal{H}^{d+m-p}\left(\left\{x \in[0,1]^{d}: h(x) \in\left[-r_{0}, r_{0}\right]^{p} \times\{0\}^{m-p}\right\}\right) \\
& =\mathcal{H}^{d-m+p}\left(\left\{x \in[0,1]^{d}:\left(h_{p+1}(x), \ldots, h_{m}(x)\right) \in\{0\}^{m-p}\right\}\right) \tag{2.19}\\
& \geq \inf _{\|b-\tilde{g}\|_{\mathcal{C}^{0}} \leq \varepsilon} \mathcal{H}^{d-m+p}\left(\mathcal{Z}_{\{0\}}^{b}\right) .
\end{align*}
$$

Substituting (2.18) into (2.19), we obtain that

$$
\begin{align*}
\mathcal{N}_{W}^{g}(\varepsilon) & =\inf _{\|h-g\|_{C^{0}} \leq \varepsilon} \mathcal{H}^{d-m+p}\left(\mathcal{Z}_{W}^{h}\right) \geq \inf _{\|b-\tilde{g}\|_{\mathcal{C}^{0} \leq \varepsilon}} \mathcal{H}^{d-m+p}\left(\mathcal{Z}_{\{0\}}^{b}\right) \\
& \geq\left(\frac{16}{\Psi_{\beta}(2 \sqrt{m-p} \cdot \varepsilon)}\right)^{m-p} \cdot 2^{-4(m-p) \cdot \sqrt{\left|\log _{2}\left(\Psi_{\beta}(2 \sqrt{m-p} \cdot \varepsilon)\right)\right|} .} \tag{2.20}
\end{align*}
$$

Step 3. To complete the proof, we shall establish (2.8) for a \mathcal{C}^{1}-smooth manifold $W \subset \mathbb{R}^{m}$ satisfying (A1). Without loss of generality, assume that for some $r_{0}>0$

$$
W_{r_{0}} \doteq\left[-\tilde{r}_{0}, \tilde{r}_{0}\right]^{p} \times\{0\}^{m-p} \subseteq \phi(W)
$$

we consider g for $r_{0}=\tilde{r}_{0} / \lambda_{2}$ in Step 2 with

$$
\begin{equation*}
\lambda_{1} \doteq \inf _{x \in U}|\nabla \phi(x)| \quad \text { and } \quad \lambda_{2} \doteq \sup _{x \in U}|\nabla \phi(x)| . \tag{2.21}
\end{equation*}
$$

The desired function $f:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ is defined by

$$
\begin{equation*}
f(x)=\phi^{-1} \circ\left[\lambda_{1} \cdot g(x)\right] \quad \text { for all } x \in[0,1] . \tag{2.22}
\end{equation*}
$$

Indeed, f admits β as a modulus of continuity since for every $x, y \in[0,1]^{d}$, it holds

$$
|f(y)-f(x)| \leq \frac{\lambda_{1} \cdot|g(y)-g(x)|}{\inf _{z \in U}|\nabla \phi(z)|}=|g(y)-g(x)|
$$

To verify (2.8), let $h \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ be such that $\|h-f\|_{\mathcal{C}^{0}} \leq \varepsilon$. From (2.21) and (2.22), one has that

$$
\left\|\frac{\phi \circ h}{\lambda_{1}}-g\right\|_{\mathcal{C}^{0}}=\frac{1}{\lambda_{1}} \cdot\|\phi \circ h-\phi \circ f\|_{\mathcal{C}^{0}} \leq \frac{\lambda_{2}}{\lambda_{1}} \cdot\|h-f\|_{\mathcal{C}^{0}} \leq \frac{\lambda_{2} \varepsilon}{\lambda_{1}}
$$

and this implies

$$
\begin{align*}
\mathcal{H}^{d-m+p}\left(\mathcal{Z}_{W}^{h}\right) & =\mathcal{H}^{d-m+p}\left(\left\{x \in[0,1]^{d}:(\phi \circ h)(x) \in \phi(W)\right\}\right) \\
& \geq \mathcal{H}^{d-m+p}\left(\left\{x \in[0,1]^{d}:(\phi \circ h)(x) \in\left[-\tilde{r}_{0}, \tilde{r}_{0}\right]^{p} \times\{0\}^{m-p}\right\}\right) \tag{2.23}\\
& =\mathcal{H}^{d-m+p}\left(\mathcal{Z}_{W_{r_{0}}}^{\phi o h}\right) \geq \mathcal{N}_{W_{r_{0}}}^{g}\left(\frac{\lambda_{2} \varepsilon}{\lambda_{1}}\right) .
\end{align*}
$$

Finally, recalling (2.20), we get for every $h \in \mathcal{C}\left([0,1]^{d}, \mathbb{R}^{m}\right)$ with $\|h-f\|_{\mathcal{C}^{0}} \leq \varepsilon$ that

$$
\mathcal{H}^{d-m+p}\left(\mathcal{Z}_{W}^{h}\right) \geq\left(\frac{16}{\Psi_{\beta}\left(2 \sqrt{m-p} \cdot \lambda_{2} \varepsilon / \lambda_{1}\right)}\right)^{m-p} \cdot 2^{\left.-4(m-p) \cdot \sqrt{\mid \log _{2}\left(\Psi_{\beta}\left(2 \sqrt{m-p} \cdot \lambda_{2} \varepsilon / \lambda_{1}\right)\right.}\right) \mid}
$$

and (2.4) yields (2.8).
Notice that if $\beta(s)=\lambda s^{\alpha}$ for some $\lambda>0$ and $\left.\left.\alpha \in\right] 0,1\right]$ then from (2.6), it holds

$$
\Psi_{\beta}(s)=\left(\frac{s}{\lambda}\right)^{\frac{1}{\alpha}} \quad \text { for all } s \in[0, \infty[.
$$

In this case, we achieve an explicit estimate in (2.8) by a direct computation. More precisely, we have the following remark.

Remark 2.4 Under the same setting in Theorem 2.3, if $\beta(s)=\lambda s^{\alpha}$ for some $\lambda>0, \alpha \in(0,1]$ then there exists a Hölder continuous function $f:[0,1]^{d} \rightarrow \mathbb{R}^{m}$ with exponent α and Hölder norm λ such that

$$
\mathcal{N}_{W}^{f}(\varepsilon) \geq C_{[W, \alpha, \lambda]} \cdot\left(\frac{1}{\varepsilon}\right)^{\frac{m-p}{\alpha}} \cdot 2^{-\frac{4(m-p)}{\alpha^{1 / 2}} \cdot \sqrt{\left|\log _{2}\left(\gamma_{W^{\varepsilon}} \varepsilon / \lambda\right)\right|}} .
$$

This particularly yields Theorem 1.1.
Finally, we remark that the factor $2^{-4 m \cdot \sqrt{\left|\log _{2}\left(\Psi_{\beta}(2 \sqrt{m} \varepsilon)\right)\right|}}$ in Theorem 2.3 is necessary . In other words, the estimate on $\mathcal{N}_{W}^{f}(\varepsilon)$ in (1.3) is not actually sharp for the case $\alpha=d=m=1$, $p=0$, and $W=\{0\}$.

Proposition 2.1 Assume that $d=m=1, p=0, W=\{0\}$ and $\beta(s)=s$ for all $s \geq 0$. Then Theorem 2.3 does not hold if the factor $2^{-4(m-p) \cdot \sqrt{\left|\log _{2}\left(\Psi_{\beta}\left(\gamma_{W} \varepsilon\right)\right)\right|}}$ in 2.8 is replaced by any positive constant.

Proof. Arguing by contradiction, suppose that there exists a function $f \in \mathcal{C}([0,1], \mathbb{R})$ and a constant $C_{f} \in(0,1]$ such that f admits β as a modulus of continuity and

$$
\begin{equation*}
\mathcal{N}_{\{0\}}^{f} \geq \frac{C_{f}}{\varepsilon} \quad \text { for all } \varepsilon>0 \text { small. } \tag{2.24}
\end{equation*}
$$

1. We first claim that for every $0<\varepsilon \leq \frac{C_{f}^{2}}{12}$ there exists $\left(y_{i}\right)_{i=1}^{N} \in[0,1]$ such that

$$
\begin{equation*}
N \geq \frac{C_{f}^{2}}{36 \varepsilon}, \quad\left|f\left(y_{i}\right)\right| \geq \frac{\varepsilon}{2}, \quad\left|y_{i}-y_{j}\right| \geq \frac{2 \varepsilon}{C_{f}} \quad \text { for all } i \neq j \tag{2.25}
\end{equation*}
$$

Indeed, dividing $[0,1]$ into $K_{0}=\left\lfloor\frac{C_{f}}{3 \varepsilon}\right\rfloor$ subintervals $\left[a_{i}, a_{i+1}\right]$ of length

$$
\begin{equation*}
\frac{2 \varepsilon}{C_{f}} \leq \ell_{i} \leq \frac{3 \varepsilon}{C_{f}} \quad \text { for all } i \in\left\{0, \ldots, K_{0}-1\right\} \tag{2.26}
\end{equation*}
$$

we consider a function $h_{\varepsilon} \in \mathcal{C}([0,1], \mathbb{R})$ which is defined in $\left[a_{i}, a_{i+1}\right]$ for every $i \in\left\{0, \ldots, K_{0}-1\right\}$ as follows:

- If $\max _{x \in\left[a_{i}, a_{i+1}\right]}|f(x)| \leq \frac{\varepsilon}{2}$ then we set

$$
h_{\varepsilon}(x)= \begin{cases}f\left(a_{i}\right)+x-a_{i}, & a_{i} \leq x \leq a_{i}-f\left(a_{i}\right)+\frac{\varepsilon}{2} \tag{2.27}\\ \frac{\varepsilon}{2}, & a_{i}-f\left(a_{i}\right)+\frac{\varepsilon}{2} \leq x \leq a_{i+1}+f\left(a_{i+1}\right)-\frac{\varepsilon}{2} \\ f\left(a_{i+1}\right)-x+a_{i+1}, & a_{i+1}+f\left(a_{i+1}\right)-\frac{\varepsilon}{2} \leq x \leq a_{i+1}\end{cases}
$$

It is clear that h_{ε} has at most 2 zeros on $\left[a_{i}, a_{i+1}\right]$, and $\left\|h_{\varepsilon}-f\right\|_{\mathcal{C}^{0}} \leq\left\|h_{\varepsilon}\right\|_{\mathcal{C}^{0}}+\|f\|_{\mathcal{C}^{0}} \leq \varepsilon_{0}$.

- Otherwise, if $\max _{x \in\left[a_{i}, a_{i+1}\right]}|f(x)|>\frac{\varepsilon}{2}$ then we divide $\left[a_{i}, a_{i+1}\right]$ into $K_{1}=\left\lceil\frac{3}{C_{f}}\right\rceil$ subintervals $\left[a_{i}^{j}, a_{i}^{j+1}\right]$ of length at most ε. For every $j \in\left\{0, \ldots, K_{1}-1\right\}$, we set

$$
\begin{equation*}
h_{\varepsilon}\left(\theta \cdot a_{i}^{j}+(1-\theta) \cdot a_{i}^{j+1}\right)=\theta \cdot f\left(a_{i}^{j}\right)+(1-\theta) \cdot f\left(a_{i}^{j+1}\right), \quad \theta \in[0,1] . \tag{2.28}
\end{equation*}
$$

In this case, h_{ε} has at most $\frac{3}{C}+1$ zeros on $\left[a_{i}, a_{i+1}\right]$ and

$$
\left\|h_{\varepsilon}-f\right\|_{\mathcal{C}^{0}\left(\left[a_{i}, a_{i+1}\right]\right)} \leq \max _{0 \leq j \leq K_{1}-1} \sup _{|x-y| \leq a_{i}^{j+1}-a_{i}^{j}}|f(x)-f(y)| \leq \beta(\varepsilon)=\varepsilon .
$$

Thus, set $\mathcal{I}=\left\{i \in\left\{0, \ldots, K_{0}-1\right\}: \max _{x \in\left[a_{i}, a_{i+1}\right]}|f(x)|>\varepsilon / 2\right\}$ and $\eta=\# \mathcal{I}$. By (1.2) and (2.24), we have

$$
\frac{C_{f}}{\varepsilon} \leq \mathcal{H}^{0}\left(\mathcal{Z}_{\{0\}}^{h_{\varepsilon}}\right) \leq \eta \cdot\left(\frac{3}{C_{f}}+1\right)+\left(K_{0}-\eta\right) \cdot 2 \leq \eta \cdot\left(\frac{3}{C_{f}}+1\right)+\left(\frac{3}{C_{f}}-\eta\right) \cdot 2,
$$

and (2.24) yields

$$
\eta \geq \frac{C_{f}^{2}-6 \varepsilon}{3\left(3-C_{f}\right) \varepsilon} \geq \frac{C_{f}^{2}}{18 \varepsilon}
$$

For every $i \in \mathcal{I}$, let $z_{i} \in \operatorname{argmax}_{x \in\left[a_{i}, a_{i+1}\right]}|f(x)|$ be such that $\left|f\left(z_{i}\right)\right| \geq \varepsilon / 2$. From the first inequality of (2.26), one can pick a desired set of at least $N \geq \frac{C_{f}^{2}}{36 \varepsilon}$ points y_{i} from the set $\left\{z_{i}: i \in \mathcal{I}\right\}$ which satisfies (2.25).
2. Using (2.25), we show that

$$
\begin{equation*}
\mathcal{N}_{\{0\}}^{f}(\varepsilon / 4) \leq\left(1-\frac{C_{f}^{2}}{12}\right) \cdot \frac{4}{\varepsilon} \quad \text { for all } 0 \leq \varepsilon \leq \frac{2 \varepsilon}{C_{f}} \tag{2.29}
\end{equation*}
$$

Divide $[0,1]$ into $K_{\varepsilon}=\left\lceil\frac{4}{\varepsilon}\right\rceil+1$ subintervals $\left[b_{k}, b_{k+1}\right]$ with length smaller than $\varepsilon / 4$, let g_{ε} : $[0,1] \rightarrow \mathbb{R}$ be a continuous such that for all $k \in\left\{0, \ldots, K_{\varepsilon}-1\right\}$, it holds

$$
g_{\varepsilon}\left(\theta \cdot b_{k}+(1-\theta) \cdot b_{k+1}\right)=\theta \cdot f\left(b_{k}\right)+(1-\theta) \cdot f\left(b_{k+1}\right), \quad \theta \in[0,1] .
$$

Up to a small variation, we can assume that $f\left(b_{k}\right) \neq 0$ for every $k \in\left\{1, \ldots, K_{\varepsilon}\right\}$ so that g_{ε} has at most one each of the intervals $\left[b_{k}, b_{k+1}\right]$. By the construction, one has

$$
\left\|g_{\varepsilon}-f\right\|_{C^{0}} \leq \max _{0 \leq k \leq K_{\varepsilon}-1}\left|f\left(b_{k+1}\right)-f\left(b_{k}\right)\right| \leq \max _{0 \leq k \leq K_{\varepsilon}-1}\left|b_{k+1}-b_{k}\right| \leq \frac{\varepsilon}{4}
$$

For every $k \in\left\{0, \ldots, K_{\varepsilon}-1\right\}$ such that $y_{i} \in\left[b_{k}, b_{k+1}\right]$ for some $i \in\{0, \ldots, N\}$, it holds for all $x \in\left[b_{k}, b_{k+1}\right]$ that

$$
\left|g_{\varepsilon}(x)\right| \geq|f(x)|-\frac{\varepsilon}{4} \geq\left|f\left(y_{i}\right)\right|-\left|\beta\left(\left|x-y_{i}\right|\right)\right|-\frac{\varepsilon}{4}>\frac{\varepsilon}{4}-\left|b_{k+1}-b_{k}\right|>0 .
$$

In this case, g_{ε} has non-zero on the at least N intervals $\left[b_{k}\right], b_{k+1}$. Thus, we have

$$
\mathcal{N}_{\{0\}}^{f}(\varepsilon / 4) \leq \mathcal{H}^{0}\left(\mathcal{Z}_{\{0\}}^{g_{\varepsilon}}\right) \leq K_{\varepsilon}-N \leq \frac{4}{\varepsilon}+1-\frac{C_{f}^{2}}{36 \varepsilon}
$$

and this yields (2.29).
3. Finally, applying (2.25) n times, we find that

$$
\mathcal{N}_{\{0\}}^{f}\left(\frac{\varepsilon}{4^{n}}\right) \leq\left(1-\frac{C_{f}^{2}}{12}\right)^{n} \cdot \frac{4^{n}}{\varepsilon} .
$$

Thus, (2.24) does not holds for ε replaced by $\frac{\varepsilon}{4^{n}}$ with $n \geq 1$ sufficiently large so that $\left(1-\frac{C_{f}^{2}}{12}\right)^{n}<C_{f}$. This concludes the proof.

Acknowledgments. This research by K. T. Nguyen was partially supported by National Science Foundation grant DMS-2154201.

References

[1] F. Ancona, O. Glass, and K. T. Nguyen, Lower compactness estimates for scalar balance laws, Comm. Pure Appl. Math, 65(9), 1303-1329, 2012.
[2] F. Ancona, O. Glass, and K. T. Nguyen, On compactness estimates for hyperbolic systems of conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32(6), 12291257, 2015.
[3] F. Ancona, O. Glass, and K. T. Nguyen, On Kolmogorov entropy compactness estimates for scalar conservation laws without uniform convexity, SIAM J. Math. Anal., 51 (4), 3020-3051, 2019.
[4] F. Ancona, P. Cannarsa, and K. T. Nguyen: Quantitative compactness for Hamilton Jacobi Equations, Archive for Rational Mechanics and Analysis 219 (2016), no. 2, 793828
[5] F. Ancona, P. Cannarsa, and K. T. Nguyen: The compactness estimates for Hamilton Jacobi Equations depending on space, Bulletin of the Institute of Mathematics, Academia Sinica 11 (2016), 63-113
[6] S. Bianchini, P. Dutta, and K. T. Nguyen: Metric entropy for Hamilton-Jacobi equation with uniformly directional convex Hamiltonian, SIAM Journal on Mathematical Analysis 54 (2022), 5551-5575.
[7] R. Capuani, P. Dutta Prerona, and K. T. Nguyen, Metric entropy for functions of bounded total generalized variation, SIAM J. Math. Anal. 53 (1), 1168 - 1190, 2021.
[8] A. Murdza and K.T. Nguyen, A quantitative version of the transversality theorem, Communications in Mathematical Sciences, to appear.
[9] J.M. Bloom, The local structure of maps of manifolds. B.A. thesis, Harvard 2004. (Link: https://www.math.harvard.edu/media/ThesisXFinal.pdf)
[10] René Thom, Quelques propriétés globales des variétés differentiables, Commentarii Mathematici Helvetici 28 (1954), no. 1, 17-86.
[11] R. M. Hardt and T Rivière, Connecting rational homotopy type singularities, Acta Math. 200 (2008), 15-83.
[12] S. Li, A note on generic transversality of Euclidean submanifolds, Manuscripta Math. 162 (2020), 213-219.

